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Abstract
In December 2019, COVID-19, a severe respiratory illness caused by the new coronavirus SARS-CoV-2 (COVID-19) emerged in
Wuhan, China. The greatest impact that COVID-19 had was on intensive care units (ICUs), given that approximately 20% of
hospitalized cases developed acute respiratory failure (ARF) requiring ICU admission. Based on the assumption that COVID-19
represented a viral pneumonia and no anti-coronaviral therapy existed, nearly all national and international health care societies’
recommended “supportive care only” avoiding other therapies outside of randomized controlled trials, with a specific prohibition
against the use of corticosteroids in treatment. However, early studies of COVID-19-associated ARF reported inexplicably high
mortality rates, with frequent prolonged durations of mechanical ventilation (MV), even from centers expert in such supportive
care strategies. These reports led the authors to form a clinical expert panel called the Front-Line COVID-19 Critical Care
Alliance (www.flccc.net). The panel collaboratively reviewed the emerging clinical, radiographic, and pathological reports of
COVID-19 while initiating multiple discussions among a wide clinical network of front-line clinical ICU experts from initial
outbreak areas in China, Italy, and New York. Based on the shared early impressions of “what was working and what wasn’t working,”
the increasing medical journal publications and the rapidly accumulating personal clinical experiences with COVID-19 patients, a
treatment protocol was created for the hospitalized patients based on the core therapies of methylprednisolone, ascorbic acid,
thiamine, heparin and co-interventions (MATHþ). This manuscript reviews the scientific and clinical rationale behind MATHþ
based on published in-vitro, pre-clinical, and clinical data in support of each medicine, with a special emphasis of studies supporting
their use in the treatment of patients with viral syndromes and COVID-19 specifically. The review concludes with a comparison of
published multi-national mortality data with MATHþ center outcomes.
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Introduction

In December 2019, an illness characterized by pneumonia asso-

ciated with the new coronavirus SARS-CoV-2 (COVID-19)

emerged in Wuhan, China. By March 11, 2020, the World

Health Organization (WHO) had characterized the novel cor-

onavirus outbreak as a pandemic, with confirmed cases in 213

countries. The greatest impact this malady had was on intensive

care units (ICUs), given approximately 20% of hospitalized

cases developed acute respiratory failure (ARF) requiring ICU

admission.1,2

Since COVID-19 was initially defined as a primary viral

syndrome and no validated anti-coronavirus therapy existed,

nearly all national and international health care societies advo-

cated a primary focus on supportive care with avoidance of

other therapies outside of randomized controlled trials, and

with specific recommendations to avoid the use of corticoster-

oids.3-5

The pervasive belief among world health care societies that

corticosteroids were harmful in COVID-19 respiratory illness

was surprising for several reasons. First, as will be detailed in

this manuscript, contrary to the WHO and CDC’s interpretation
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of prior pandemic data, a review of the same data by a group

including one of the authors (G.U.M) was both published and

publicized by the Society for Critical Care Medicine in early

April 2020 which concluded that the largest and most well-

controlled studies from the SARS, MERS, and H1N1 pan-

demics found that the mortality of patients with moderate to

severe illness was significantly reduced when treated with cor-

ticosteroids.6 Second, reports from the “front-line” clinicians in

Italy and New York reported on rapidly observable, positive

impacts when corticosteroids were used in treatment. Further,

an expert panel of U.S radiologists had published a tragically

little-noticed review of the early CT scans from Wuhan, China

in March of 2020, where they concluded that the “most com-

mon pattern of lung injury in COVID-19 is of an organizing

pneumonia” (OP), a condition accurately identifiable by CT

scan and whose first-line therapy is corticosteroids. The pres-

ence of OP likely explains both the seemingly baffling clinical

presentation of early COVID-19 respiratory disease as well as

the efficacy of corticosteroids as evidenced in a recent review

by one of the authors (PK).7,8

However, in that period prior to the now-widespread use of

corticosteroids, multiple early studies of COVID-19-associated

ARF reported inexplicably high mortality rates, with frequent

prolonged durations of mechanical ventilation (MV), even

from centers expert in such supportive care strategies.9 These

reports led many physicians, including the authors of this

manuscript, to question the widely recommended supportive

care-only approach, and to review the evidence behind thera-

pies that could counteract the well-recognized syndrome of

severe hypoxemia, hyper-inflammation, and hypercoagulabil-

ity, with the rationale that interventions targeted at these patho-

physiologies could decrease dependence on mechanical

ventilators and mortality in COVID-19 patients, and thus, have

an immediate significant global impact on this public health

emergency.9,10

As a group of clinical researchers in critical care with over a

100-year collective front-line, bedside ICU experience in the

treatment of severe infections and acute respiratory distress

syndrome (ARDS), the authors formed a clinical expert panel

which we called the Front-Line COVID-19 Critical Care Alli-

ance (www.flccc.net). The panel collaboratively reviewed the

emerging clinical, radiographic, and pathological reports of

COVID-19 while initiating multiple discussions among a wide

clinical network of front-line clinical ICU experts from the

initial outbreak areas in China, Italy, and New York. Based

on the shared early impressions of “what was working and what

wasn’t working,” the increasing medical journal publications

and the rapidly accumulating personal clinical experiences

with COVID-19 patients, a treatment protocol was created for

hospitalized patients, adapted from a protocol created by one of

the authors (P.E.M) at their home institution. The protocol

consisted of the 4 “core” therapies of methylprednisolone,

ascorbic acid, thiamine, heparin and a number of co-interven-

tions and thus was called “MATHþ” (Table 1). The core med-

icines were all highly familiar, low-cost, FDA-approved

medications with known therapeutic mechanisms, well-

established safety profiles and multiple clinical trials showing

benefit in similar disease models such as ARDS. The additional

co-interventions were also supported by either promising early

clinical data, strong scientific rationale, and/or a pre-existing

clinical evidence base for similar critical care conditions as

those in COVID-19. Since the development of MATHþ early

in the pandemic, the treatment efficacy of the majority of the

protocol components (corticosteroids, ascorbic acid, heparin,

statins, Vitamin D, melatonin) have now been either validated

in subsequent randomized controlled trials or more strongly

supported with large observational data sets.11-16

Many centers similarly attempted to develop “treatment

guidelines” for COVID-19, and although they primarily

emphasized supportive respiratory care techniques, many also

included approaches either quickly retracted as obviously

harmful, such as “early intubation” or therapeutic agents and

interventions whose mechanisms of action held only theoreti-

cal anti-SARS-CoV-2 activity.17-21

To study the efficacy of the proposed MATHþ protocol

against COVID-19, a collective decision was made to do so

via the formation of a patient registry to measure and compare

the outcomes of patients treated with MATHþ, not only

against the prevailing “supportive-care only” strategy, but also

against other novel proposed treatment approaches employed

throughout the country and world.17-19

The authors were troubled by editorials published in major

peer-reviewed medical journals which argued that all treat-

ments used in a “novel” disease were “experimental” and thus

use should be restricted to only within randomized controlled

trials (RCT).22 “Experimental” therapies, best defined as those

with either no clinical evidence to support or near nil clinical

familiarity with use in similar disease states, were indeed

adopted and widely used, particularly in the early weeks of the

pandemic when drugs such as hydroxychloroquine, remdesivir,

lopinavir/ritonavir and tocilizumab were employed. However,

these agents stand in marked contrast to the core MATHþ
therapies of which there was extensive clinical experience and

expertise amongst the authors along with published clinical

evidence showing positive outcomes when used in the treat-

ment of patients with similar diseases and conditions. In some

instances, several were already incorporated into standard ICU

treatment protocols for conditions such as severe pneumonia,

ARDS, and sepsis in their institutions. Each element of

MATHþ has been extensively studied in critical illness, almost

all sufficiently so that meta-analyses have been published on

their use and indications, thus none could be viewed as an

“experimental therapy,” given they are considered more in-line

with “standard” or “supportive care” for many critical illness

states.

Although the authors place immense value and importance

on the need for well-conducted observational and/or rando-

mized controlled trials, in such a novel disease syndrome, it

must be recognized that not all institutions possess the neces-

sary experience, resources, or infrastructure to design and con-

duct such trials, especially during a pandemic. Further, the

group decided against a randomized, placebo-controlled trial
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design given that such trials require investigators to possess

“clinical equipoise,” which is the belief by the investigator that

neither intervention in the control or experimental group is

“better.” With respect to each of the individual “core” therapies

of MATHþ, all authors felt the therapies either superior to any

placebo or possessed evidence of minimal risk and cost com-

pared to potential benefit such that use was favored, with these

judgements based on not only the rapidly accumulated

evidence and insight into COVID-19 but also from our collec-

tive knowledge, research, and experience with each of the

component medications in critical illness and other severe

infections.

Conversely, the authors believe it is within the immense

power and resources of large research institutions to conduct

such trials where clinical equipoise exists. A powerful example

of such an accomplishment is the RECOVERY trial conducted

Table 1. MATHþ Hospital Treatment Protocol for COVID-19 (www.flccc.net).

Medication Indication/Initiation Recommended dosing Titration/Duration

Methylprednisolone A. Mild hypoxemia: requires
O2 via NC to maintain
saturation > 92%

40 mg IV bolus
then 20 mg IV twice daily

A1. Once off O2, then taper with 20mg daily
x 3 days then 10 mg daily x 3 days,
monitor
CRP response.

A2. If FiO2, or CRP increase move to B.

B. Moderate–severe
hypoxemia (High Flow O2,
NIPPV, IMV)

COVID-19 Respiratory Failure protocol
(see Figure 2)
Preferred: 80 mg IV bolus, followed by
80 mg / 240 ml normal saline IV infusion at
10 ml/hr
Alternate: 40 mg IV twice daily

B1. Once off IMV, NPPV, or High flow O2,
decrease to 20 mg twice daily. Once off
O2, then taper with 20 mg/day for 3 days
then 10mg/day for 3 days.

B2. If no improvement in oxygenation in
2–4 days, double dose to 160 mg/daily.

B3. If no improvement and increase in
CRP/Ferritin, move to “Pulse Dose”
below.

C. Refractory Illness/
Cytokine Storm

“Pulse” dose with 125 mg IV
every 6–8 hours

Continue for 3 days then decrease to 80 mg
IV/daily dose above (B). If still no
response or CRP/Ferritin high/rising,
consider “Salvage Therapy” below

Ascorbic Acid O2 < 4 L on hospital ward 500–1000 mg oral every 6 hours Until discharge

O2 > 4 L or in ICU 1.5–3 g intravenously every 6 hours Sooner of 7 days or discharge from ICU,
then switch to oral dose above

Thiamine ICU patients 200 mg IV twice daily Sooner of 7 days or discharge from ICU

Heparin (LMWH) Hospital ward patients
on � 4 L O2

0.5 mg/kg twice daily.
Monitor anti-Xa, target 0.2–0.5 IU/ml

Until discharge then start DOAC at half
dose for 4 weeks

ICU patients or > 4L O2 1 mg/kg twice daily
(monitor anti-Xa levels, target 0.6–1.1 IU/ml)

Later of: discharge from ICU or off oxygen,
then decrease to hospital ward dosing

above

Vitamin D Hospital ward patients
on � 4 L O2

Calcifediol preferred:
0.532 mg PO day 1, then 0.266 mg PO day 3
and 7 and weekly thereafter
Cholecalciferol:
10,000 IU/day PO or 60,000 IU day 1, 30,000
IU days 3 and 7 and then weekly

Until discharge from ICU

ICU patients or on > 4 L O2 Cholecalciferol 480,000 IU (30 ml) PO on
admission, then check Vitamin D level on day
5, if < 20 ng/ml, 90,000 PO IU/day for 5 days

Until discharge from ICU

Atorvastatin ICU Patients 80 mg PO daily Until discharge
Melatonin Hospitalized patients 6–12 mg PO at night Until discharge
Zinc Hospitalized patients 75–100 mg PO daily Until discharge
Famotidine Hospitalized Patients 40–80 PO mg twice daily Until discharge
Therapeutic Plasma
Exchange

Patients refractory to
pulse dose steroids

5 sessions, every other day Completion of 5 exchanges

Legend: CRP ¼ C-Reactive Protein, DOAC ¼ direct oral anti-coagulant, ICU ¼ Intensive Care Unit, IMV ¼ Invasive Mechanical Ventilation, IU ¼ International
units, IV ¼ intravenous, NIPPV ¼ Non-Invasive Positive Pressure Ventilation, O2 ¼ oxygen, PO (per os) ¼ oral administration.
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by researchers at Oxford University.11 Specifically, the design

and execution of the RECOVERY trial depended on investiga-

tors with clinical equipoise around the use of corticosteroids in

the treatment of a severe coronavirus syndrome. The MATHþ
authors did not possess such equipoise, as we held a collective

belief as to the critical importance of corticosteroid therapy in

COVID-19, as evidenced above.6,8,23

Thus, it came as no surprise to the authors that the RECOV-

ERY trial was stopped early due to excess deaths in a control

group consisting of over 4000 patients treated with placebo. A

conservative estimate of avoidable death in the placebo group

if they had instead received corticosteroids is that over 200

lives would have been saved; 109 in patients requiring oxygen

and 84 in those on mechanical ventilation.11

The scientific and clinical rationale supporting the MATHþ
treatment protocol will be reviewed in the following sections

through a review of the published in-vitro, pre-clinical, and

clinical data in support of each medicine, with a special empha-

sis on studies involving the treatment of viral syndromes and

COVID-19 specifically. The review will conclude with a report

on the preliminary outcomes data from the 2 hospitals that

adopted the MATHþ protocol in the treatment of COVID-19

patients.

Methylprednisolone and COVID-19

Methylprednisolone was chosen based on the following cri-

teria: (i) evidence of corticosteroid responsive disease, (ii)

results of relevant clinical studies, many from prior viral pan-

demics including more than 10,000 patients, and (iii) pharma-

cological characteristics.

Similar to ARDS, patients with severe COVID-19 have a

significant reduction in glucocorticoid receptor expression in

bronchoalveolar lavage fluid myeloid cells that negatively

related to lung neutrophilic inflammation, NETosis, and dis-

ease severity.24,25 The dysregulated inflammation and coagula-

tion observed in COVID-19 (see Pathophysiology) is also

similar to that of multifactorial ARDS where ample evidence

has demonstrated the ability of prolonged corticosteroid treat-

ment (CST) to downregulate – systemic and pulmonary—

inflammation-coagulation-fibroproliferation and accelerate

disease resolution.24,26 Additionally, the computed tomography

findings of ground-glass opacities and the histological findings

of organizing pneumonia, hyaline membranes, inflammatory

exudates, and acute fibrinous and organizing pneumonia are

all compatible with CST-responsive inflammatory lung

disease.8,27,28

Relevant clinical studies at the time of the creation of

MATHþ included randomized controlled trials (RCTs) in adult

patients with non-viral ARDS, large-scale observational stud-

ies in patients with SARS-CoV (n ¼ 7008), H1N1 (n ¼ 2141),

influenza, and early results from multiple COVID-19 observa-

tional studies.29-35 In non-viral ARDS, aggregate data from 10

RCTs (n ¼ 1093) showed that CST was associated with a

sizable increase by day 28 in MV-free days (WMD 6.18 days,

95% CI 3.45 days to 8.90 days), ICU-free days (WMD 8.12

days, 95% CI 3.87 days to 12.37 days) and a reduction in

hospital mortality (RR 0.67, CI 0.52-0.870) with the greatest

impact observed with methylprednisolone treatment.6,32,36

Importantly, the survival benefit observed during hospitaliza-

tion persisted after hospital discharge with follow-up observa-

tions extending up to 1 year.6 Except for transient

hyperglycemia (mostly within the 36 hours following an initial

bolus), CST was not associated with increased risk for neuro-

muscular weakness, gastrointestinal bleeding, or nosocomial

infections (RR 0.83 (95% CI 0.67 to 1.02).

The evidence of benefit in viral pneumonia (SARS, H1N1)

relies on large-scale studies (n ¼ 9149) which included adjust-

ment for confounders and analysis of CST variables (type,

timing, dose, and duration) on the outcome.31,32 These studies

reported a significant reduction in mortality with dosage and

duration of CST similar to the one recommended by the Corti-

costeroid Guideline Task Force of the Society of Critical Care

Medicine (SCCM) and the European Society of Intensive Care

Medicine (ESICM) (Figure 1).6,37 In the largest SARS-CoV

study, after adjustment for possible confounders, methylpred-

nisolone 80mg/day was safe and decreased the risk for death by

63% (HR 0.37, 95% CI: 0.24-0.56).31 In the H1N1 study, sub-

group analysis among patients with PaO2: FiO2 <300 mm Hg

(535 vs. 462), low-to-moderate-dose CST (methylprednisolone

25-150 mg/day) significantly reduced both 30-day mortality

(aHR 0.49 [95% CI 0.32-0.77]) and 60-day mortality (aHR

0.51 [95% CI 0.33-0.78]) despite having a higher rate of noso-

comial infections.32

Methylprednisolone, for its greater penetration in lung tis-

sue, longer residence time, and greater inhibitory activity of

transcription factor nuclear factor-kB (driver of lung inflam-

mation) is the most frequently used intravenous corticosteroid

for the treatment of severe acute inflammatory lung diseases.38-

40 The initial daily dose of 1 mg/Kg of ideal body weight

(approximately 80 mg) was the one shown to be associated

with the highest mortality reduction in RCTs of non-viral

ARDS and large observational studies in SARS-CoV and

H1N1 pneumonia.6,31,32 A recent study that matched the

expression changes induced by SARS-CoV2 in human lung

tissue tissues and A549 lung cell line against the expression

changes triggered by 5,694 FDA-approved drugs, found

methylprednisolone to be the drug with the greatest potential

to revert the changes induced by COVID-19, while other

closely related corticosteroids, such as dexamethasone or pre-

dnisone, were not.41

The risk for decreased viral clearance with CST is over-

stated and the most frequently quoted article by Arabi et al.,

in patients that received greater than 7 days CST there was a

strong trend toward lower 90-day mortality [aOR 0.51, 95%
confidence interval (CI) 0.26-1.00; p ¼ 0.05] and no impact on

viral clearance [aOR 0.94, 95% confidence interval (CI) 0.36-

2.47; p ¼ 0.90].42 Contrary to the widespread, unfounded fears

of delayed viral clearance which unfortunately influenced the

multiple national and international society recommendations

against use of CST in COVID-19, the reality is that there is

no evidence linking delayed viral clearance to worsened
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outcomes in critically ill COVID-19 patients, and further, it is

unlikely that it would have a greater negative impact than the

hosts own “cytokine storm.”26

Subsequent to the introduction of the MATHþ protocol,

even more definitive support for CST was provided by a large

randomized trial along with prospective observational studies.

The RECOVERY trial investigated dexamethasone (6 mg once

daily for up to 10 days) in a randomized, controlled, open-label,

adaptive, platform trial with a primary outcome of 28-day mor-

tality.11 The RCT studied 2104 patients randomly allocated to

receive dexamethasone compared to 4321 patients concur-

rently allocated to usual care. CST was associated with a sig-

nificant reduction in mortality (21.6% vs. 24.6%) with an age

adjusted rate ratio [RR] 0.83; 95% confidence interval [CI]

0.74 to 0.92; P < 0.001). Dexamethasone reduced deaths by

one-third in the subgroup of patients receiving invasive

mechanical ventilation (29.0% vs. 40.7%, RR 0.65 [95% CI

0.51 to 0.82]; p < 0.001), by one-fifth in patients receiving

oxygen without invasive mechanical ventilation (21.5% vs.

25.0%, RR 0.80 [95% CI 0.70 to 0.92]; p ¼ 0.002), but did not

reduce mortality in patients not receiving respiratory support at

randomization (17.0% vs.13.2%, RR 1.22 [95% CI 0.93 to

1.61]; p ¼ 0.14). However, it should be noted that dexametha-

sone is the corticosteroid associated with greater suppression of

the adrenal gland. Notably, the RECOVERY RCT utilized a

small dose of dexamethasone and did not incorporate tapering

to prevent rebound inflammation.

An Italian multicenter, prospective observational study

explored the association between exposure to prolonged CST

(a pre-designed protocol: methylprednisolone 80 mg for 9 days

followed by tapering based on improvement in predefined

laboratory parameters) and the need for ICU referral, intuba-

tion or death within 28 days (composite primary endpoint) in

patients (83 on CST vs. 90 matched control) with severe

COVID-19 pneumonia admitted to Italian respiratory high-

dependency units.43 The composite primary endpoint was met

by 19 vs. 40 [adjusted hazard ratio (HR) 0.41; 95% confidence

interval (CI): 0.24-0.72]. Transfer to ICU and need for invasive

MV was necessary in 15 vs. 27 (p ¼ 0.07) and 14 vs. 26 (p ¼
0.10), respectively. By day 28, the MP group had fewer deaths

(6 vs. 21, adjusted HR ¼ 0.29; 95% CI: 0.12-0.73) and more

days off invasive MV (24.0 + 9.0 vs. 17.5 + 12.8; p¼ 0.001).

Study treatment was associated with rapid improvement in

PaO2: FiO2 and CRP levels without affecting lymphocyte

count. The complication rate was similar for the 2 groups (p

¼ 0.84). No difference was observed in viral shedding, deter-

mined as the number of days between hospital referral and the

first negative nasopharyngeal swab.

A Spanish semi-randomized study investigated methylpred-

nisolone (3 days each, 80 mg and 40 mg, respectively) in 85

COVID-19 (56 CST, 29 control) hypoxemic patients; the pri-

mary composite outcome similar to the Italian study.44 CST

was associated with reduced risk of the composite endpoint in

the intention-to-treat, age-stratified analysis (combined risk

ratio—RR—0.55 [95% CI 0.33-0.91]; p ¼ 0.024).

The Henry Ford COVID-19 Management Task Force con-

ducted a single pre-test, single post-test quasi-experiment in a

multi-center health system in Michigan.34 They investigated

213 patients with confirmed moderate to severe COVID admit-

ted over a 2 weeks period; the first week 81 patients received

standard of care (SOC), the second week 132 patients also

received SOC and early initiation of CST (methylprednisolone

0.5 to 1 mg/kg/day for 3 days, and longer duration if they

required MV). In the first week, half of the patients in the SOC

group received CST but with a later initiation. The primary

composite outcome was similar to the Italian study, and was

Figure 1. Protocol for prolonged corticosteroid treatment recommended by the corticosteroid guideline task force of the society of critical
care medicine (SCCM) and the European society of intensive care medicine (ESICM).
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reached by fewer patients in the CST group (34.9% vs. 54.3%,

p ¼ 0.005).43 This treatment effect was observed within each

individual component of the composite endpoint. Significant

reduction in median hospital length of stay was also observed

in the early corticosteroid group (8 vs. 5 days, p < 0.001).

Hospital length of stay was decreased by 3 days (p < 0.001).34

In the aftermath of the RECOVERY trial, a total of 6 addi-

tional RCTs investigating corticosteroid treatment in patients

with severe COVID-19 were published. An updated meta-anal-

ysis requested by the WHO included patients randomized to

receive systemic dexamethasone, hydrocortisone, or methyl-

prednisolone (678 patients) or to receive usual care or placebo

(1025 patients).45 Data on mortality found little inconsistency

between the trial results (I2¼ 15.6%) and the summary OR was

0.70 (95%CI, 0.48-1.01; P¼ .053) based on the random-effects

meta-analysis. They reported 222 deaths among patients ran-

domized to corticosteroids (32.7%) and 425 deaths (42.5%)

among patients randomized to usual care or placebo (summary

OR, 0.66 [95%CI, 0.53-0.82]; P < .001). As a result of these

findings, the WHO updated their “Corticosteroids for COVID-

19: Living Guidance” document recommending “systemic cor-

ticosteroids rather than no corticosteroids for the treatment of

patients with severe and critical COVID-19 (strong recommen-

dation, based on moderate certainty evidence).”46

Ascorbic Acid (AA) and COVID-19

Approximately 15% of patients with Covid-19 infection prog-

ress to a respiratory illness, which in its early phase is consis-

tent with OP, and if either not treated or insufficiently treated

with corticosteroids progresses to a more severe pneumonitis,

with about 5-10% requiring mechanical ventilation which then

further injures the lung and causes ARDS often coincident with

a cytokine storm characterized by vasoplegia, hypercoagulabil-

ity and multiorgan failure.10,24,26 Ascorbic acid (AA) is the

most potent and important anti-oxidant in mammals with pleio-

tropic modes of action targeting multiple molecules and biolo-

gical pathways involved in inflammatory states such as sepsis,

ARDS, trauma, and burns.47-49

A significant body of preclinical and clinical evidence in

septic shock and other types of stress responses demonstrate

that intravenous AA can attenuate many of the life threatening

complications of a dysregulated immune system during Covid-

19 infection.49,26,50 In contrast to influenza and other respira-

tory viruses, there is a blunted antiviral response with low

interferon production and increase in pro-inflammatory cyto-

kines. In a minority of patients, cytokine storm ensues with

overwhelming production of pro-inflammatory cytokines and

reactive oxygen species leading to progressive organ fail-

ure.24,26,51-53

The innate immune and adaptive response provides an

essential role in the antiviral response and is mediated by the

release of type I interferon a/b by macrophages, lymphocytes

and infected immune cells.51,54 Several experiments employing

H1N1 infected knockout mice unable to synthesize AA found

that administration of AA increases interferon production,

restores expression of genes necessary for production of inter-

ferons and decreases proinflammatory gene expression with a

subsequent decrease in the release of proinflammatory cyto-

kines.54,55 AA is thus an essential factor in the anti-viral

immune response during the early phase of virus infection

through the production of type I IFNs.54

Ascorbic acid is also a cofactor for the production of endo-

genous catecholamines and corticosteroid synthesis.25-38 Given

that humans, due to an evolutionary mutation, are almost

unique among all mammals in their inability to synthesize

AA, in states of stress plasma AA levels are rapidly and mark-

edly decreased as opposed to other mammals such as goats that

immediately begin to produce many grams of AA in stressed or

infected states.49,56,57 AA reverses ROS induced oxidant stress

impairment of glucocorticoid receptor function. 58,59 Thus, AA

is synergistic with endogenous and exogenous corticosteroids

in reversal of shock.49,60 In clinical studies AA given with or

without steroids results in decreases in vasopressor requirement

and reversal of shock.49,57,59,60 AA antioxidative and ROS

scavenging properties may counteract cytokine, chemokine

and inflammatory cell mediated excessive production of reac-

tive oxygen species which are known to cause decreased vas-

cular tone and endothelial injury.58,59

In animal models, intravenous ascorbic acid was shown to

improve arteriolar responsiveness to vasoconstrictors and

decrease microvascular permeability.57,61 The hemodynamic

effects of AA have been demonstrated in septic shock, trauma,

and burns where administration of ascorbic acid reduced vaso-

pressor and volume resuscitation requirement.47,49,62,63

Marik et al, in a propensity adjusted study of patients with

sepsis, administered intravenous AA, hydrocortisone, and thia-

mine in patients with severe sepsis and found a significant

survival benefit.47 CITRIS-ALI, the largest double blind pla-

cebo controlled trial of high dose AA in ARDS patients found

that both mortality and decreased ICU length of stay were

significantly reduced in the treatment arm.64 The reasons for

the lack of immediate adoption of this therapy in ARDS can

only be explained by the fact that the original primary outcome

analysis failed to account for all the early excess deaths in the

control group, where no severity of illness (SOFA) score was

assigned to the patients who died. A subsequent letter to the

editor by a group of prominent scientists demanded an analysis

accounting for these early deaths. The study authors complied

and found that the primary outcome of SOFA score to be sta-

tistically significantly decreased at 96 hours along with the

mortality in the treated group.65 Thus, CITRIS-ALI, although

inexplicably portrayed as a negative trial, was instead pro-

foundly positive in terms of both its primary outcome and

important secondary outcomes.

Two large meta-analyses involving critically ill patients

demonstrated intravenous vitamin C administration showed

no adverse reactions, reduced the need for fluids and vasopres-

sor support and reduced the length of time on mechanical

ventilators.50,66

Most importantly, a prospective, randomized, double-blind,

placebo-controlled trial of high-dose intravenous AA in
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COVID-19 respiratory failure was conducted at 3 hospitals in

Hubei, China where the intervention group were treated with

12 g of IV AA every 12 hours for 7 days.15 The trial was

stopped early due to control of the epidemic, thus only 56

patients were included. Although the primary endpoint of inva-

sive mechanical ventilation free days was not significant 26.0

vs 22.0 (p¼ .57), significant improvements in oxygenation and

reductions in IL-6 were found in the intervention group over

the 7 days and a reduction in 28 day mortality was observed,

although the difference was not statistically significant (22.2%
vs. 37.9% p ¼ .31). In the sub-group of patients with SOFA

scores � 3, the differences in ICU and hospital mortality were

statistically significant while the 28-day mortality approached,

but did not reach statistical significance. (21.7% vs. 52.4%, p¼
.06).

In summary, intravenous AA was included based on the

pleiotropic effects on important physiologic functions, its prop-

erties as powerful antioxidant/ROS scavenger, and reversal of

ROS induced oxidant stress impairment of glucocorticoid

receptor function, its impact on outcomes in the treatment of

both COVID respiratory failure and non-COVID ARDS as well

as other hyperinflammatory conditions along with an impec-

cable safety profile and low cost.

Thiamine and COVID-19

Thiamine is a water-soluble vitamin passively absorbed in the

small intestine. After ingestion, free thiamine is converted to

the active form thiamine pyrophosphate (TPP), commonly

known as vitamin B1, by thiamine pyrophosphokinase. The

majority of TPP in the body is found in erythrocytes and

accounts for approximately 80% of the body’s total storage.67

TPP is a key co-factor for pyruvate dehydrogenase, the gate-

keeper for entry into the Krebs Cycle, without which pyruvate

would be converted to lactate as opposed to acetyl-coenzyme

A.67

Multiple other non-cofactor roles of thiamine exist within

the immune system, gene regulation, oxidative stress response,

cholinergic activity, chloride channel function, and neurotrans-

mission.67 In experimental rheumatoid arthritis, thiamine

increased the ability of corticosteroids to suppress production

of TNF-a and IL-6.68

The human adult can store around 30 mg of thiamine in

muscle tissue, liver and kidneys, however, these stores can

become depleted in as little as 18 days after the cessation of

thiamine intake.67 A thiamine deficiency syndrome, beriberi,

bears a number of similarities to sepsis, including peripheral

vasodilation, cardiac dysfunction, and elevated lactate levels.49

In critical illness, the prevalence of thiamine deficiency is in

10-20% upon admission and can increase up to 71% during

ICU stay, suggesting rapid depletion of this vitamin.69,70 Based

on limited data, no association was detected between thiamine

levels, markers of oxidative stress and mortality.70,71

In one study, a significant negative correlation was reported

between thiamine and lactic acid levels in patients with sepsis

without liver dysfunction.69 In a pilot randomized controlled

trial (RCT) of patients with septic shock (n ¼ 88), the admin-

istration of thiamine (200 mg twice a day for 7 days) reduced

lactate levels and improved mortality over time in a pre-defined

subgroup of patients with thiamine deficiency (35% of

cohort).72 In a retrospective, single-center, matched cohort

study, administration of thiamine within 24 hours of septic

shock (n ¼ 123) was associated with improved likelihood of

lactate clearance and a reduction in 28-day mortality.73 In a

randomized study of patient undergoing gastrointestinal sur-

gery, thiamine administration (200 mg/ daily for 3 days) was

associated with significant reduction in post-operative

delirium.74

It should be noted that the increased secretion of IL-17 by

TH17 cells contributes to the proinflammatory cytokine storm

characteristic of COVID-19.75 In an ex-vivo study, Vatsalya et

al demonstrated that 200 mg thiamine/day decreased TH17 cell

activation.76

Given these promising results and favorable safety profile,

the MATHþ protocol included thiamine supplementation as

part of the combination therapy in critically ill COVID-19

patients.

Anticoagulation and COVID-19

From the earliest clinical experiences caring for COVID-19

patients, physician reports of excess clotting emerged from

China and Italy.77-79 Infections are recognized activators of

inflammatory and coagulation responses as part of the host

defense, and in COVID-19, although patients present with pro-

minent elevation of D-dimer and fibrin/fibrinogen degradation

products as is typically seen in traditional disseminated intra-

vascular coagulation DIC, either little or no abnormalities in

prothrombin time (PT), partial thromboplastin time (PTT), and

platelet counts are seen initially.77 The term COVID-19 Asso-

ciated Coagulopathy (CAC) was created to describe these

abnormalities in tests although typical impaired clotting that

results in increased bleeding is not observed.77 Conversely,

nearly all published clinical reports describe CAC as a

“hypercoagulable” condition.

Thromboelastography (TEG) has best elucidated the hyper-

coagulable nature of CAC given its ability to assess both the

pro-thrombotic and hypocoagulable dynamics of whole blood

as it forms clot under conditions of low shear stress. A group

including one of the authors (PK) recently published a case

series of TEG studies from the first wave of COVID-19 patients

encountered which consistently revealed hypercoagulability

with rapid and large amplitudes of clot formation with little

to no fibrinolytic activity present.80,81 These early insights,

along with the large amount of subsequent investigations

reviewed below, served as an initial basis for the more aggres-

sive anti-coagulation regimen incorporated within MATHþ.

Given that investigations into CAC found severe hypercoa-

gulability, it is unsurprising that the majority of published data

report a higher than previously reported frequency of clotting

in critically ill COVID-19 patients despite receiving thrombo-

prophylaxis. Helms et al.82 from France reported an incidence
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of 16.7% of VTE (mainly pulmonary embolism) in their

COVID-19 respiratory failure patients; an incidence 6-fold

higher than a matched population of non-COVID ARDS

patients treated a year prior. Equally alarming, 96.6% of

patients on continuous renal replacement therapy developed

circuit clotting. In 2 studies from Holland the incidence of VTE

in ICU patients was up to one third by day 7 and greater than

50% after day 14.72,79

In a lower extremity ultrasound screening study of an ICU

population with 2/3 on systemic anticoagulation (AC) and 1/3

on thromboprophylaxis, VTE was found in 69% of the patients,

with a 100% incidence in those on prophylaxis and 56% in

patients on AC.83 The VTE rates reported in the above ICU

populations of COVID-19 patients are magnitudes higher than

the approximate 8% rate of VTE reported in previous studies of

non-COVID-19 ICU patients receiving thromboprophylaxis.84

In contrast to COVID-19 ICU patients, the rates of VTE in

COVID-19 hospitalized ward patients have been lower. Mid-

deldorp reported a cumulative 9.2% incidence of VTE, similar

to pre-COVID-19 incidences in non-ICU patients, however

another study found a cumulative incidence of 27% with 4%
arterial thrombosis resulting in a composite incidence of

29%.85,86 However, not all studies of hospital ward patients

found such high incidences, for instance Lodigiani et al87

reported a 6.6% incidence in this population while Cattaneo

et al found that in a population of 388 COVID-19 patients, 64

of whom underwent screening leg ultrasound, no patient devel-

oped VTE.88

In regard to PE incidences alone, a recent systematic review

of PE prevalence in COVID-19 analyzed 52 studies which

included 20,523 patients and reported a markedly increased

pooled prevalence of 9% in non-ICU patients and 19% among

ICU patients.89

In addition to the markedly elevated incidence of

“macrovascular” thrombosis, autopsies have also revealed

extensive microvascular thromboses, with one report finding

severe endothelial injury associated with the presence of intra-

cellular virus and disrupted cell membranes and widespread

thrombosis with microangiopathy.90 Another found that alveo-

lar capillary microthrombi were 9 times as prevalent in

COVID-19 patients than patients with influenza (p <

0.001).91 Microvascular thrombosis is also a prominent feature

in multiple organs, in some cases despite full anticoagulation

and regardless of timing of the disease course, suggesting that it

plays an early role in causing illness.92 A recent autopsy series

found that in 17 of 25 examined lungs, intravascular fibrin

thrombi were found within medium sized arteries or arterioles

while in 23 of the 25, platelet aggregates and/or thrombi were

found in medium sized arteries, arterioles and capillaries.93

Even more worrisome were the brain findings where a wide-

spread presence of microthrombi and acute infarction was

observed in 6 of 20 cases. In 2 of the cases with clinical infarc-

tion there was global anoxic brain injury. Further, in a recent

systematic review examining the incidence of stroke in

COVID-19, the proportion of COVID-19 patients with stroke

(1.8%, 95%CI 0.9-3.7%) was 8x higher than that reported

among hospitalized patients with influenza (0.2%).94 More

concerning was the suggestion that these estimates were almost

certainly a gross underestimate due to; 1) missed stroke diag-

noses in those not extubated and who died, 2) the restrictions on

and therefore lack of autopsies, and 3) the well-recognized drop

in the number of patients with acute cerebrovascular symptoms

seeking medical attention in the COVID-19 era.

Given such high and devastating incidences of macro and

micro-vascular thrombosis in multiple organs among COVID-

19 patients, a major clinical question is whether anti-coagulant

therapy can improve the outcomes of COVID-19 patients. Tang

first reported on 449 patients with “severe” COVID-19 and

found that low-molecular weight heparin (LMWH), the major-

ity of the time in prophylactic doses, was associated with a

large mortality benefit in the sub-group of patients meeting

sepsis-induced coagulopathy score �4 (40.0% vs 64.2%, P ¼
0.029), or D-dimer > 6 fold of upper limit of normal (32.8% vs

52.4%, P ¼ 0.017).95 A large study from Mt. Sinai in New

York City on 2,777 patients reported a mortality of 29.1% in

those treated with therapeutic AC compared to 62.7% who did

not receive treatment dose.96 Another study found that among

49 mechanically ventilated patients, 33% were diagnosed with

PE and that the use of high intensity thromboprophylaxis was

associated with a lower occurrence of PE (2/18; 11%) than a

standard regimen (11/22; 50%—OR 0.13 [0.02-0.69]; p ¼
.02).97

A retrospective study of 468 hospitalized patients also found

that the initial use of high intensity thromboprophylaxis was

associated with improved 30 day mortality (adjusted RR 0.26;

95% CI,.0.07-0.97; p ¼ .04) without a significant increase of

bleeding.98 The now largest cohort study of 4,389 patients

found that both prophylactic and therapeutic anticoagulation

were associated with an absolute decrease of in-hospital mor-

tality and intubation by almost 50% and 30% respectively.99

Among the sub-group of patients (n ¼ 1860) initiated on AC

within 48 hours of admission, therapeutic AC was associated

with lower in-hospital mortality than prophylactic AC,

although the difference was not statistically significant (aHR

0.86; 95% CI 0.73-1.02; p ¼ .08). Interestingly, rates of major

bleeding were similar on therapeutic AC (27/900, 3.0%) as

compared to patients on prophylactic AC (33/1959, 1.7%) and

no AC (29/1530, 1.9%). Jonmarker et al compared the out-

comes of COVID-19 ICU patients treated with standard, inter-

mediate, and full dose anti-coagulation.100 They found that

mortality was lower in high dose (13.5%) vs medium dose

(25.0%) and low dose thromboprophylaxis (38.8%) groups, p

¼ 0.02.

The first RCT comparing therapeutic AC to standard throm-

boprophylaxis in COVID-19 ICU patients on mechanical ven-

tilation (HESACOVID) was recently published, and although

small, reported statistically significant improvements in oxy-

genation, liberation from mechanical ventilation (hazard ratio:

4.0 [95% CI 1.035–15.053], p ¼ 0.031), and ventilator-free

days (15 days [IQR 6–16] versus 0 days [IQR 0–11], p ¼
0.028) in patients treated with therapeutic doses of AC.101
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Although it is encouraging that the initial MATHþ proto-

col-recommended treatment dose AC for COVID-19 ICU

patients has now been strongly associated with improved sur-

vival, what is worrisome are the multiple reports of

“coagulation failure” in which severe thrombotic complica-

tions occurred in COVID-19 patients despite therapeutic

AC.83,85,102 A possible explanation for this phenomena was

provided by Maier et al, where they used capillary viscometry

in 15 severely ill COVID-19 ICU patients, almost all in ARDS,

and found that all patients had a blood viscosity exceeding 95%
of normal, a condition they termed “COVID-19 associated

hyperviscosity.”103 The 4 patients with the highest viscosity

all suffered thrombotic complications despite the majority of

patients having been on either systemic AC or intermediate

dose prophylaxis. Given that hyperviscosity is thought due to

increased plasma proteins such as fibrinogen or immunoglobu-

lin which then damage endothelium, this suggests that thera-

peutic plasma exchange (TPE) may play a role.104 The growing

body of evidence strongly supporting the role of TPE in

COVID-19 is reviewed below in the section “Salvage

Therapy.”

To the best of our knowledge, no major national or interna-

tional medical society to date has recommended therapeutic

AC be administered as standard practice in any sub-group of

COVID-19 patients. Many have instead recommended stan-

dard thromboprophylaxis for all hospitalized patients with

COVID-19 while also avoiding a recommendation for even

high-intensity thromboprophylaxis. This therapeutic conserva-

tism is puzzling, given that, based on the best available

evidence to date, the incidence and risks of the now well-

described severe hypercoagulability appear to far outweigh the

risks of even a slightly more aggressive anticoagulation regi-

men, based on the large magnitude of survival associated with

therapy and the paucity of reports of significantly increased

bleeding complications.95,96 Thus we believe that, in hospita-

lized patients, an aggressive thromboprophylaxis regimen is

warranted while in critically ill patients, therapeutic dose AC

be administered unless specifically contra-indicated.

The “intermediate” dose thromboprophylaxis we recom-

mend in hospital ward patients is based on pharmacokinetic

and anti-Xa level monitoring studies and suggest use of

weight-based prophylaxis with 0.5 mg/kg twice daily of low-

molecular weight heparin (LMWH).105

In ICU patients, we recommend treatment dose AC be pro-

vided using 1mg/kg LMWH twice daily. Further, we recom-

mend monitoring of Anti-Xa levels aiming for an anti-Xa

activity of 0.6-1.1 IU/ml due to reports that heparin resistance

appears to be common in COVID-19.106 In addition, due to

augmented renal clearance, COVID-19 patients may have

reduced anti-Xa activity despite standard dosages of

LMWH.107

Melatonin and COVID-19

Melatonin (N-acetyl-5-methoxytryptamine) is synthesized

from tryptophan in the pineal gland and in the mitochondria

of almost all cells in the body.108 Melatonin is released from

the pineal gland into the systemic circulation, achieving plasma

concentration between 80 and 120 pg/mL at night and 10–20

pg/mL during the day. Melatonin binds to 2 receptor subtypes:

MT1 and MT2.109 The melatonin receptors are G-protein

coupled receptors (GPCRs) which both activate and inhibit a

constellation of intracellular signaling pathways.

In addition to its role in regulating the circadian rhythm,

melatonin is a potent antioxidant and immune regulator that

controls both the innate and adaptive immune response108,110

The anti-oxidative effect of melatonin cooperates with its anti-

inflammatory actions by up-regulating anti-oxidative enzymes

(e.g. superoxide dismutase), down-regulating pro-oxidative

enzymes (e.g. nitric oxide synthase), and by interacting directly

with free radicals, functioning as free radical scavenger.108,111

Melatonin plays an important role in protecting the mitochon-

dria from oxidative injury, thereby playing a critical role in

maintaining energy production.108 Melatonin has significant

anti-inflammatory, anti-apoptotic properties, anti NF-kB acti-

vation and has been demonstrated to reduce pro-inflammatory

cytokines levels.112-115

Melatonin levels falls off dramatically after age 40; these

are also the patients at highest risk of developing COVID-19

and from dying from the disease.116,117

SARS-CoV-2 induced endothelial dysfunction is initiated

by increases in the phosphorylation levels of JAK2 and STAT3,

producing increased amounts of reactive oxygen species.118

These changes can be reversed by administration of melatonin

by abating the production of superoxide anion, hydrogen per-

oxide and peroxynitrite.112 The clinical utility of melatonin in

COVID-19 was first demonstrated in a large prospective reg-

istry created to identify risk factors for the development of a

positive SARS-CoV-2 test.16 Researchers found that the most

potentially impactful intervention to lower risk of testing pos-

itive were if patients were taking melatonin, paroxetine, or

carvedilol, all medications that had been previously identified

in drug-repurposing studies to have specific activity and poten-

tial benefit against SARS-CoV-2.16,115

Oral melatonin use by humans is exceedingly safe, with only

minor side effects such as headache and drowsiness. The lethal

dose 50 (LD 50) of melatonin is reported to be infinity; i.e. it is

impossible to administer a large enough dose of melatonin to

kill an animal. It should be noted that there is marked varia-

bility in first-pass hepatic metabolism, resulting in marked

unpredictability in serum levels.116 Furthermore, the optimal

dose of melatonin in “healthy individuals” and those with

inflammatory disorders is unknown. For patients with

COVID-19 we suggest a dose of between 6-12 mg, taken at

night.112 However, a dose of up to 400 mg has been

suggested.114

Zinc and COVID-19

Zinc likely has an important role in the prophylaxis of COVID-

19, in the treatment of the early symptomatic phase, and in

limiting the immune dysregulation and associated cytokine
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storm in the pulmonary phase.119 Zinc is a nutritionally funda-

mental trace element and is the second most abundant trace

metal in the human body after iron. Since zinc does not have

a major storage depot in the body, zinc deficiency is easily and

rapidly produced. It should be recognized that the same dietary

factors leading to deficiency of zinc frequently result in the

deficiency of other micronutrients. Zinc plays an important role

in the host’s anti-viral (and antibacterial) immune response. In

addition, zinc is directly viricidal. Zinc is a component of over

1000 transcription factors, including DNA binding proteins and

is required in over 300 metalloenzymes. Zinc plays a central

role in cellular differentiation and proliferation, and its defi-

ciency causes impaired immune response, increased suscept-

ibility to infections and impaired wound healing.120,121 Zinc is

necessary for optimal functioning of both innate and adaptive

immunity. Zinc status strongly affects T- and B-lymphocyte

function and antibody formation.120 Impaired immune function

due to inadequate zinc status may be the most common cause of

secondary immunodeficiency in humans. Zinc deficiency is an

important public health problem affecting 2 billion people

worldwide, including a considerable proportion of the Western

population.120,121-123 Zinc levels are reported to be very low in

critically ill patients, particularly those with sepsis and acute

respiratory failure.124-126 Low zinc levels have been reported to

be associated with recurrent infections and increased hospital

mortality.127 In addition, zinc deficiency has been demon-

strated to potentiate ventilator induced lung injury.128

Previous studies have demonstrated the benefit of zinc sup-

plementation in viral infections, most notably upper respiratory

tract infections. Meta-analyses of RCTS have demonstrated

that Zinc lozenges at a dose of � 75mg/day (elemental zinc)

administered within 24 hours of onset of symptoms and taken

for at least 5 days significantly reduced the duration of common

cold symptoms, school absence and the use of antibiotic.129,130

Trials of low dose zinc lozenges (<75 mg/day zinc) found no

effect on the duration of colds. However, when combined with

vitamin C, low dose zinc was reported to reduce the duration of

symptoms of the common cold.123 When used prophylactically

for at least 5 months zinc lozenges at a dose � 75mg/day

reduced the risk of developing a common cold. Zinc supple-

mentation of nursing home elderly patients was reported to

reduce the incidence of pneumonia.131 Adverse events of Zinc

lozenges include a bad taste and increased incidence of nausea.

Te Velthuis and colleagues demonstrated that zinc together

with the zinc ionophore pyrithione inhibited the activity of the

SARS-Co-V RNA dependent RNA polymerase blocking viral

replication in a cell culture.132 It should be noted that both

hydroxychloroquine and the plant phytochemical quercetin are

Zinc ionophores.133,134 However, the role of zinc with or with-

out the addition of zinc ionophores in the treatment of COVID-

19 remains speculative.135

Vitamin D and COVID-19

Vitamin D is obtained via the diet or produced in the skin by

UVB light. Aside from its known role in calcium metabolism

and bone health it also has important roles in the immune

system including support of endothelial barriers, and innate and

adaptive immunity.136 The innate immune system in COVID-

19 produces both pro-inflammatory and anti-inflammatory

cytokines while vitamin D reduces the production of pro-

inflammatory Th1 cytokines such as tumor necrosis factor a
and interferon g and increase the expression of anti-inflamma-

tory cytokines by macrophages.137-139

Given it’s important roles in immune function, many have

hypothesized that vitamin D deficiency increases susceptibility

to infections and that supplementation may improve outcomes,

particularly in COVID-19.140,141 Data supportive of the theory

that deficiency leads to infections largely rest on the fact that

seasonal influenza infections generally peak in conjunction

with times of the year when 25(OH)D concentrations are low-

est.142 Further, the onset of the epidemic and higher case load

in countries during the winter season also raises the possible

association with low vitamin D status.143 Rhodes et al144 first

identified this link by comparing the mortality of COVID-19 in

relation to country latitude and found that, even after adjusting

for age, there was a 4.4% increase in mortality for each degree

latitude north of 28 degrees. Further, ethnic minorities in both

the United States and the United Kingdom have high rates of

Vitamin D deficiency, potentially explaining why the mortality

rates in these populations are much higher. Recently, strong

evidence supporting a prophylactic role of Vitamin D supple-

mentation in COVID-19 comes from a large observational

analysis of de-identified tests from a national laboratory which

included over 190,000 patients from all 50 states. They ana-

lyzed SARS-CoV-2 test results among patients with a Vitamin

D level drawn at some point in the previous 12 months. The

SARS-CoV-2 positive test rates among 3 Vitamin D range

levels were as follows: 12.5% if “deficient” (<20 ng/ml),

8.1% if “adequate” (30-34ng/ml), and 5.9% if the level was

above 55ng/ml.145

Given the strong associations of Vitamin D deficiency with

higher rates of viral infections, multiple studies have tested

whether vitamin D supplementation can reduce this risk.

Although studies have conflicted in their findings, a recent

meta-analysis from 2018 found that regular supplementation

with vitamin D decreased the risk of acute respiratory tract

infections, with the most profound effects in patients with

severe vitamin D deficiency.146

The risk of Vitamin D insufficiency and the benefits of pre-

illness supplementation were most recently highlighted in a

Iranian study of 235 patients with Vitamin D levels measured

on admission.147 They found that of the patients with severe

COVID-19, 67.2% had vitamin D insufficiency. Further, the

mortality rates of patients over 40 with and without sufficient

Vitamin D was 9.7% vs. 20%, suggesting that vitamin D serves

an important role in modulating the immune response.

In the ICU, vitamin D deficiency is common and levels

decrease rapidly after admission.148,149 Further, deficiency has

strong negative correlations with outcomes, namely higher

mortality.150,151 Multiple, initial studies of Vitamin D supple-

mentation in critically ill populations were conducted and
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included in a 2017 meta-analysis that found a statistically sig-

nificant effect in reducing mortality.152,153 However, more

recently, the results of a large, prospective, multi-national,

double blind, placebo controlled trial (VIOLET) on the effects

of cholecalciferol supplementation in Vitamin D deficient cri-

tically ill patients was published.154 The study results, surpris-

ingly, were profoundly negative in that no benefits were found

of giving a large single dose supplement given around the time

of admission into the ICU. Further, no benefits were found in

any individual sub-group, even among those with more severe

illness or with more severe deficiency.

Although the findings of the VIOLET trial strongly suggest

that Vitamin D supplementation alone has no benefit as an

intervention in the critically ill, our inclusion of Vitamin D in

COVID-19 treatment, aside from the evidence suggesting the

possibility of a more potent therapeutic role in both viral syn-

dromes and COVID-19 (likely few patients with viral syn-

dromes were included in the VIOLET study), is largely based

on the therapeutic enhancement of corticosteroid effect when

co-administered with Vitamin D, similar to the synergistic

effects of corticosteroids with Vitamin C.155 Investigators have

demonstrated that Vitamin D up-regulates glucocorticoid

receptors which leads to increased T-cell apoptosis while it can

also enhance the corticosteroid effect on and suppression of

cytokine production in peripheral blood cell monocytes.156-158

Recently, in a pilot RCT of Vitamin D therapy in hospita-

lized COVID-19 patients using calcifediol, the direct precursor

to the active form of Vitamin D in the serum, patients were

treated on the day of admission with an oral dose of 0.532 mg

(roughly equivalent in potency to a dose of 68,000 IU of Vita-

min D3), then they gave half the dose on day 3, day 7, and

weekly thereafter. They found that of the 50 patients treated

with calcifediol, one required admission to the ICU (2%) while

of 26 untreated patients, 13 required admission to the ICU

(50%), p < .001, OR 0.02 [0.002-0.17].14 None of the treated

patients died while 2 control group patients died. The authors

concluded that calcifediol seems to reduce the severity of the

disease, but larger trials will be required to provide a more

definitive answer.

Thus, available data suggest that high-dose vitamin D sup-

plementation is beneficial not only in the prevention of viral

infections but also in COVID-19 and in improving the effects

of corticosteroid therapy.

Although the impact of supplementation varies by defi-

ciency status as well as severity of illness, vitamin D supple-

mentation is safe; one meta-analysis of healthy patients found

no adverse events, while in the critically ill, mild hypercalce-

mia was the most common adverse effect.146,159

Serum levels greater than 50 nmol/L (20ng/mL) are thought

sufficient for protection against acute respiratory tract infec-

tions.146 It should be noted that the predominant form of sup-

plementation in North America is Vitamin D2 (ergocalciferol)

and in Europe it is Vitamin D3 (cholecalciferol), although the

dosing is the same. One report found that “doses up to 10,000

IU/day is safe, although well above what is needed” and that

“only 1,000-2,000 IU may be needed to obtain optimal effects

on bone and immunity.”160 Thus to reduce the risk of infection,

one expert recommended that people at risk of COVID-19

consider taking 10,000 IU/day of vitamin D3 for a few weeks

to rapidly raise 25(OH)D concentrations, followed by 5000 IU/

d. The goal should be to raise 25(OH)D concentrations above

40–60 ng/mL (100–150 nmol/L).160

In the critically ill, the doses used from published RCT’s

ranged from 200,000-600,000 IU of Vitamin D3, generally in a

single enteral dose.152,161,162 Based on the Castillo et al trial of

calcifediol in COVID-19, in hospitalized patients, we recom-

mend either the same doses of calcifediol be used or the equiv-

alent doses with cholecalciferol. In the ICU, we favor a single

large dose of 480,000 IU (30 ml) similar to the prior ICU trials

above (Table 1). The Vitamin D level should then be re-

checked on day 5, if <20 ng/ml, a supplemental dose of

96,000 IU/day for 5 days should be given.

Statin Therapy and Covid-19

Statins are medicines that lower lipid levels but also have mul-

tiple anti-inflammatory actions. Over a decade of observational

studies, both matched and non-matched showed largely consis-

tent benefits in patients with sepsis and/or ARDS.163 Multiple

randomized controlled trials were then conducted using various

statins and doses, however, in a well-conducted meta-analysis

of RCT’s in sepsis involving 2628 patients, no difference in

mortality between groups was found.164 Similarly, in ARDS

trials, a meta-analysis from 2016 found no difference in impor-

tant outcomes.165 However, in an editorial that reviewed the

outcomes from the STATInS and HARP-2 trials, they found

that an alteration of just 3 events would have yielded statisti-

cally significant results in favor of statin use based on mortality

outcomes.166-168 This low “fragility index” suggests that ben-

efits in subgroups exist but are then “lost” in the heterogenous

populations that are often included in RCT’s of critical illness

syndromes such as ARDS and sepsis. This hypothesis was

seemingly validated by a secondary analysis of the HARP-2

trial in which the authors split patients into 2 phenotypes of

ARDS, a “hyperinflammatory” and “hypoinflammatory”

type.169 The hyperinflammatory group had higher values of

sTNFr-1 and IL-6, lower platelet counts, more vasopressor use,

fewer ventilator free days and much higher 28-day mortality.

When the hyperinflammatory phenotype received simvastatin

80 mg, a large and statistically significant reduction in mortal-

ity was found. Further, in COVID-19, 2 retrospective studies

have demonstrated a strong association of statin use with sur-

vival. In a large study of 13,981 patients in China, among

which 1,219 received statins, the all-cause mortality was

almost halved in the statin treated patients (HR ¼ .58, (95%
CI, 0.43-0.80, p ¼ .001).13 In a smaller study in the US, one

group found that among a group of 88 patients, 55% of whom

died, atorvastatin use was associated with a 73% lower risk of

progression to death (aHR 0.38 (95% CI 0.18-0.77, p ¼
.008).170 Thus, given the frequent hyperinflammation and ele-

vated levels of IL-6 in COVID-19 respiratory failure, it appears

reasonable to employ statin therapy. Atorvastatin is favored
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due to its more favorable drug-interaction profile and a higher

dose of 80 mg should be used, similar to the HARP-2 trial.

Famotidine and COVID-19

Famotidine, a histamine-2 receptor antagonist (H2RA),

although commonly used to suppress acid production in the

stomach, is also known to have in-vitro properties which not

only inhibit viral replication such as in HIV but also exert

stimulatory effects on almost all immune cells of the innate

and adaptive immune system.171 It can also prevent H2 R cyto-

kine inhibition and prevent inhibition by histamine on Th-1

cytokine release.172,173

H2RA’s have proven effective in the past against other

viruses. Cimetidine, and less so famotidine exhibited reduced

viral infection with HIV in vitro, increased the clearance of

warts caused by human papilloma virus, and appeared effective

in improving the symptoms associated with chronic Epstein-

Barr virus infection.174-176 In fact, ranitidine bismuth citrate

effectively inhibited the nucleoside triphosphate hydrolase and

DNA unwinding activities of the SARS coronavirus helicase

and dramatically reduced its replication levels in infected

cells.177

Given prior evidence of anti-viral, and in particular anti-

SARS-CoV and immune system effects, Freedberg et al per-

formed a retrospective cohort study using propensity score

matching in COVID-19 patients at a single medical center. The

treatment group all received famotidine within 24 hours of

admission. 1620 patients were included with 81 having

received famotidine. They found that the use of famotidine was

associated with a large reduced risk for death or intubation

(adjusted hazard ratio (aHR) 0.42, 95% CI 0.21-0.85) and also

with reduced risk for death alone (aHR 0.30, 95% CI 0.11-

0.80).178 An interesting associated finding was that in patients

on proton pump inhibitors, no reduced risk for any patient out-

comes was observed. Although an observational study, propen-

sity score matching was performed between groups, and a large

difference in intubation and death was observed. Although such

a study should be strictly be considered as hypothesis generat-

ing only with the need for an RCT to optimally validate, in the

interim, given the biologic plausibility, prior efficacy against

other viruses along with a well-known safety profile, low cost,

high availability and potentially large associated reduction in

mortality, use of famotidine in the treatment of COVID-19

appears reasonable. Doses used in the Freedberg study were

10 mg in 17%, 20 mg in 47%, and 40 mg in 35% with a median

of 5.8 days of use.178

Management of Respiratory Failure

Although a comprehensive review of the optimal support of

oxygenation and ventilation in COVID-19 respiratory failure

is beyond the scope of this manuscript, several key physiologic

insights should be recognized.

Early publications quickly highlighted the puzzling discor-

dance between the degree of hypoxemia and modest work of

breathing observed in COVID-19 patients, describing it as

“silent hypoxemia” and such patients as “happy

hypoxemics.”179,180 Similarly, soon after mechanical ventila-

tion was instituted, unexpectedly high degrees of lung compli-

ance in conjunction with severe hypoxemia was deemed a new

“L” phenotype. Although reasons for lack of dyspnea are mul-

tiple, the largest contributors are; 1) early COVID-19 is an

“organizing pneumonia” representing a cellular infiltration into

the alveoli and ducts rather than alveolar fluid accumulation/

edema as in classic ARDS making the lung “dry and light”

versus “heavy and fluid-filled” and thus leads to less energy

work to inflate and counter-act de-recruitment, 2) the as yet un-

explained, paradoxical hyperperfusion of the foci of organizing

pneumonia suggesting a failure of typical hypoxic pulmonary

vasoconstriction and causing disproportionate hypoxemia

(Figure 2), and 3) the likely early and extensive micro and/or

macrovascular clotting not detected on routine imaging

studies.8,181,182

These differences from “traditional ARDS” were unfortu-

nately both widely minimized and overlooked as evidenced by

frequent recommendations for “early intubation” in what was

an unfounded fear of the mechanically well-tolerated hypoxe-

mia. Such approaches likely contributed to not only the unac-

ceptably high mortality first reported but also the widespread

shortages of ventilators, ICU beds, ventilators, nurses and med-

ications in some of the earliest hard-hit areas. Such approaches

curiously departed from the long held therapeutic principle of

instituting mechanical ventilation, “neither too early, nor too

late,” with decisions to intubate resting upon an assessment of

the patients work of breathing WOB) and their ability to sustain

that work rather than solely on a presumed necessary level of

oxygen saturation. When WOB is felt excessive or unsustain-

able despite non-invasive modes, then and only then should

initiation of invasive mechanical support be pursued. Our rec-

ommended strategy for COVID-19 respiratory failure is

Figure 2. Spectral CT image with contrast in a COVID-19 patient.
Markedly increased iodine uptake is seen (color scale on right of
image), indicating increased perfusion to the ground glass opacities.
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illustrated in Figure 3. With similar approaches, many centers

quickly learned that adopting a such a primary focus on the

support of oxygenation using non-invasive means and methods

(self-proning) led to less need for ventilators and ICU beds with

improved outcomes.

Salvage Therapy

It has become increasingly recognized that the pathophy-

siologic mechanisms leading to hospitalization in COVID-

19 occur in phases (Figure 4) and are largely driven by the

systemic host response phase rather than the cytopathic

viral replicative phase.183 Since the host response is now

understood as a complex interaction of inflammation,

endotheliopathy, cytokine storm, and hypercoagulability,

some have argued that therapeutic plasma exchange could

offer unique benefits by removing cytokines, stabilizing

endothelial membranes, and reversing the hypercoagulable

state.184

In several of the authors clinical experiences, they have

encountered a subset of patients who have failed to respond

physiologically to the combined therapies that make up the

MATHþ protocol, largely thought secondary to advanced

disease at the time of presentation or extensive co-morbidity.

In the first such cases, therapeutic plasma exchange (TPE)

was trialed with temporally associated physiologic improve-

ments observed which then led to both extubation and dis-

charge. In 2 of the authors experiences (PEM, PK), at the time

of this writing, they encountered a total of 16 patients that

demonstrated little physiologic improvement despite being

treated with high-dose MATHþ protocol who were then

empirically treated with TPE. 13 of the 16 were extubated

and discharged while 3 failed to respond and later died.

Increasing publications of case series and case reports from

centers across the world have now described the efficacy of

TPE in over 60 COVID-19 patients that did not respond to

initial therapies, with the majority having been treated with

corticosteroids.185-195 Nearly all describe similar positive

physiologic and clinical responses temporally associated with

initiation or completion of TPE. Further, 3 retrospective,

observational cohort studies including a total of 74 patients

treated with plasmapheresis have reported dramatic differ-

ences in both extubation and survival.104,196,197 The largest,

a study from Pakistan of 45 COVID-19 patients treated with

plasmapheresis compared to 45 propensity matched controls,

reported that the mortality in the plasmapheresis treated group

was 8.9% vs 38.5% in controls, HR 0.21, 95% CI 0.09-0.53,

log rank .002.197 Khamis et al in Oman published on 31

Figure 3. Therapeutic Approach to Hypoxemia and Respiratory Failure in COVID-19.
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COVID-19 patients in moderate to severe respiratory failure

where 11 of the more severely ill patients received TPE with a

slightly higher proportion of the TPE group also receiving

tocilizumab compared to controls.104 They reported both

large improvements in extubation rates (73% vs. 20%, p ¼
.018) and mortality (0% vs 35%, p ¼ .03).

Although these studies are strongly suggestive of a role

for TPE in the management of COVID-19 patients unre-

sponsive to now standard therapies such as corticosteroids,

both prospective and/or randomized studies should be done

to better establish the indications, duration, and efficacy of

TPE.

MATHþ Protocol Hospital Mortality Outcomes and
COVID-19

The MATHþ protocol (Table 1) reviewed above has been

implemented in the treatment of COVID-19 patients at 2 hos-

pitals in the United States; United Memorial Hospital in Hous-

ton, Texas (J.V) and Norfolk General Hospital in Norfolk,

Virginia (P.E.M). MATHþ was systematically provided upon

admission to the hospital at United Memorial while at Norfolk

General, the protocol was administered upon admission to the

ICU. Available hospital outcome data for COVID-19 patients

treated at these 2 hospitals as of July 20, 2020 are provided in

Figure 4. Phases of COVID-19 Illness.

Table 2. Comparison of MATHþ Center Outcomes With Published Hospital Mortality in COVlD-19.

Author Country
Number of

hospitalized patients
Data collection

end date
Hospital or 28 day

mortality (%) Number of hospitals

Docherty a UK 20,133 4-19-20 26.0 208
Richardson b USA 2,634 4-1-20 21.0 12
Horby c UK 6,425 6-8-20 22.9 176
Rosenberg d USA 1,438 4-24-20 20.3 25
Arshad e USA 2,541 5-2-20 18.1 6
Myers f USA 377 3-31-20 15.6 21
Mikami g USA 3,708 4-17-20 21.7 8
Vizcaychipi h UK 923 4-22-20 32.0 2
Zhou i China 191 1-31-20 28.3 2
Wu j China 201 2-13-20 26.4 1
MATHþ hospitals (A) USA 140 7-20-20 4.4* 2

(B) 191 6.1*

Legend: (A) United Memorial Medical Center, Houston, TX, (B) Sentara Norfolk General Hospital, Norfolk, Virginia.
*Data obtained from Hospital Chief Medical Officer.
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Table 2, including comparison to the published hospital mor-

tality rates from multiple COVID-19 publications across the

United States and world. The average hospital mortality at

these 2 centers in over 300 patients treated is 5.1%, which

represents more than a 75% absolute risk reduction in mortality

compared to the average published hospital mortality of 22.9%
among COVID-19 patients. Although this is a limited compar-

ison due to a lack of data regarding severity of illness and

treatments provided, the low reported mortality at the 2 centers

within a considerable sample size of patients provide suppor-

tive clinical evidence for the physiologic rationale and efficacy

of the MATHþ treatment protocol. One limitation with this

comparison is that the comparative studies were all published

before the RECOVERY trial identified the mortality improve-

ments with corticosteroid use, and thus, with more widespread

use of corticosteroids the reported mortality from other centers

may decrease over time. However, it should be noted that in the

RECOVERY trial, even in the patients who benefited from

corticosteroids such as those on oxygen or who required

mechanical ventilation, the 28-day mortality rates were still

between 20%-30% respectively, while the patients who were

not on oxygen had mortality rates between 10-20% depending

on whether corticosteroids were used, all higher than the cen-

ters using the MATHþ protocol.

Conclusion

In conclusion, the varied pathophysiologic mechanisms identi-

fied in COVID-19 likely require multiple therapeutic agents

working in concert to counteract the diverse, deleterious con-

sequences of this aberrant immune response. It is exceedingly

unlikely that a “magic bullet” will be found, or even a medicine

which would be effective at multiple stages of the disease. The

Mathþ treatment protocol instead offers an inexpensive com-

bination of medicines with a well-known safety profile based

on strong physiologic rationale and an increasing clinical evi-

dence base which potentially offers a life-saving approach to

the management of COVID-19 patients.
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